

Deformable Butterfly: A Highly Structured and Sparse Linear Transform

Rui Lin^{1,*} Jie Ran^{1,*} Kung Hung Chiu² Graziano Chesi¹ Ngai Wong^{1,*}

¹ Dept. of Electrical and Electronic Engineering, The University of Hong Kong

² United Microelectronic Center (Hong Kong) Limited

Video Presentation For NeurIPS 2021

Source Code: https://github.com/RuiLin0212/DeBut

The University of Hong Kong

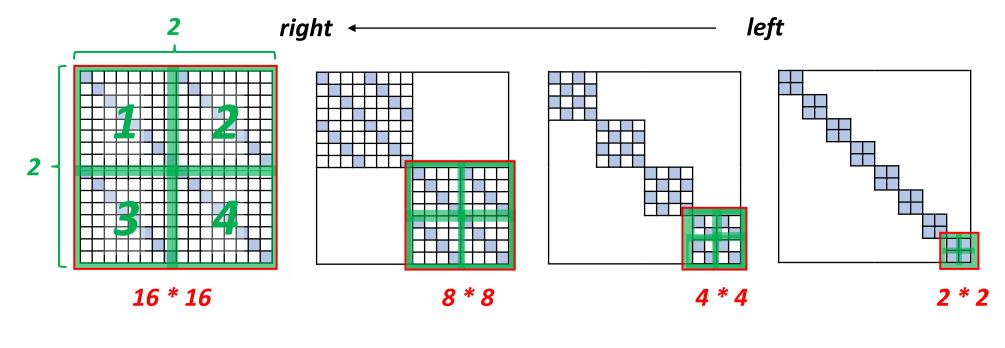
Content

1. Background

- Butterfly Matrix
- Convolution as a Matrix Product

2. Deformable Butterflies (DeBut)

- Designing DeBut Factors
- Initializing the DeBut Factors


3. Experiments

4. Conclusion

香港大學 The University of Hong Kong

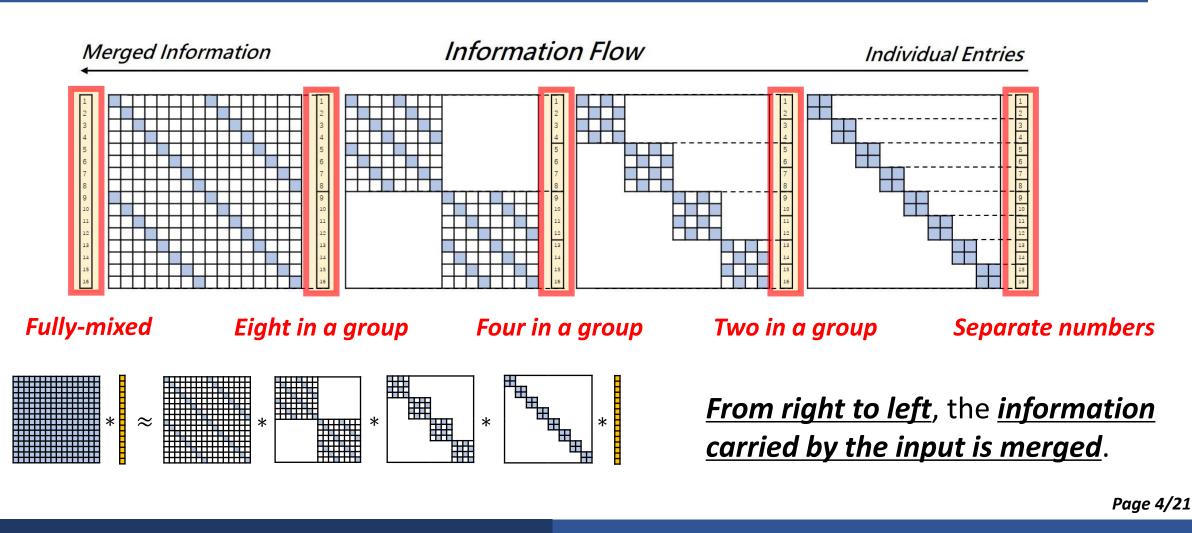
Butterfly Matrix

<u>Standard</u> Butterfly matrix has <u>Powers-of-Two limitations.</u>

Page 3/21

Background

DeBut Experiments


Conclusion

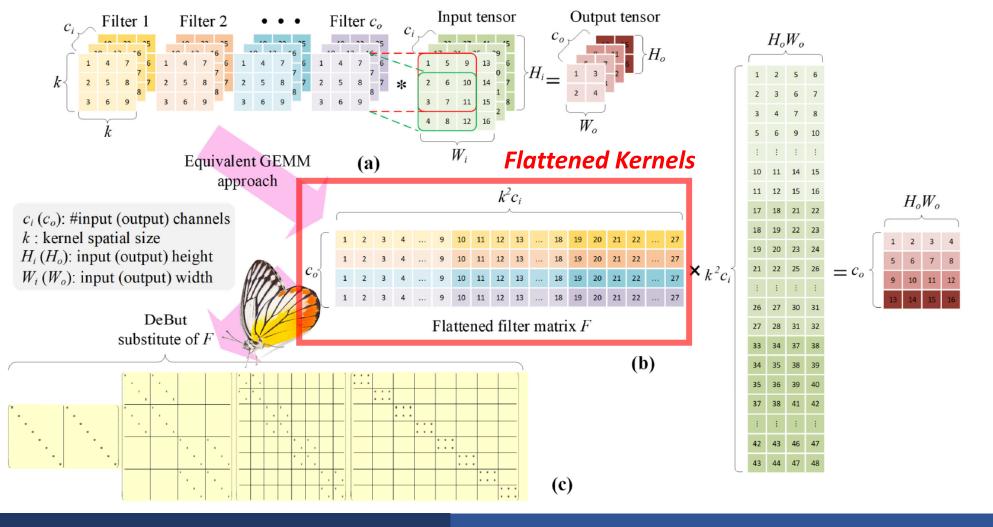
Butterfly Matrix

Convolution as Matrix Product

Butterfly Matrix


Background

DeBut Experiments


Conclusion

Butterfly Matrix

Convolution as Matrix Product

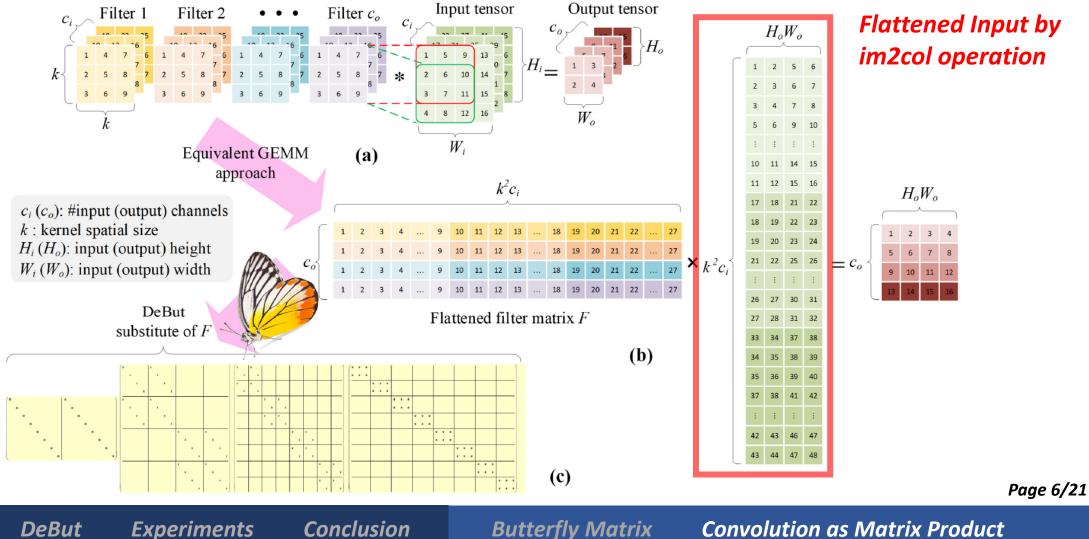
Convolution as a Matrix Product

Background

DeBut Experiments

Conclusion

Butterfly Matrix


Convolution as Matrix Product

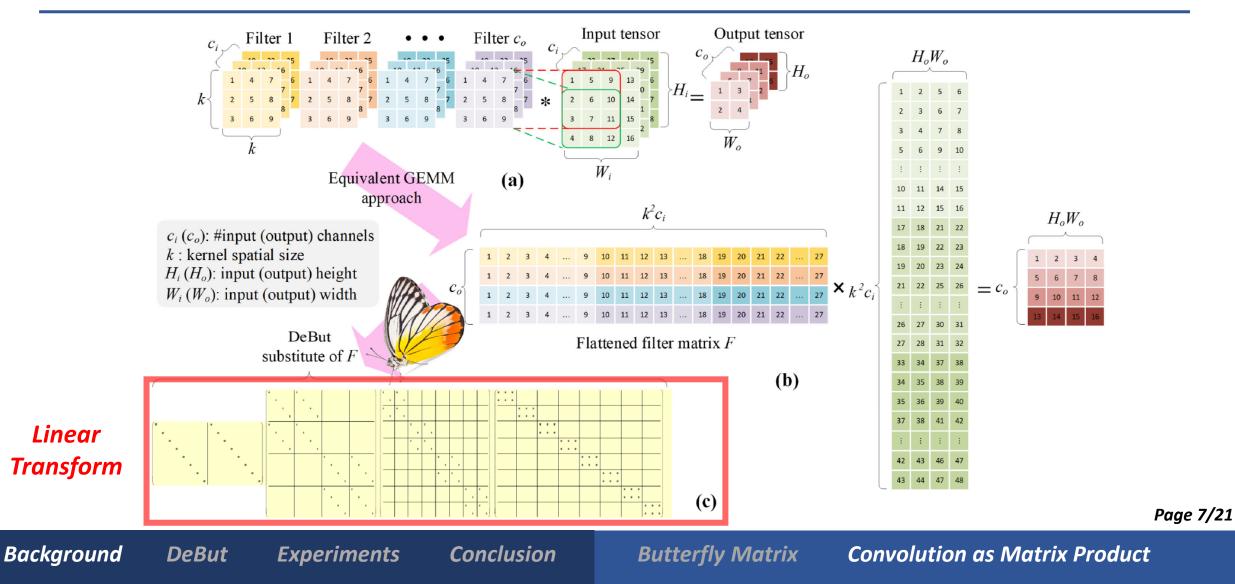
Page 5/21

The University of Hong Kong

Convolution as a Matrix Product

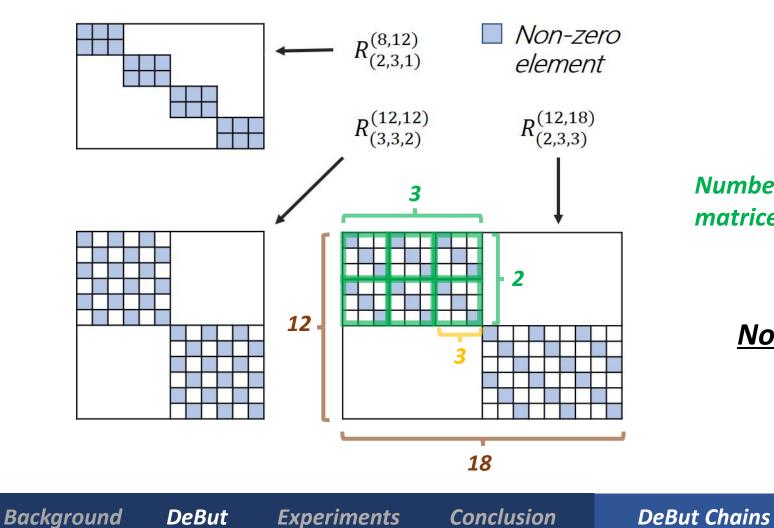

Background

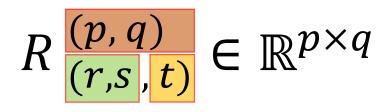
DeBut


Conclusion

Butterfly Matrix

Convolution as Matrix Product


Convolution as a Matrix Product



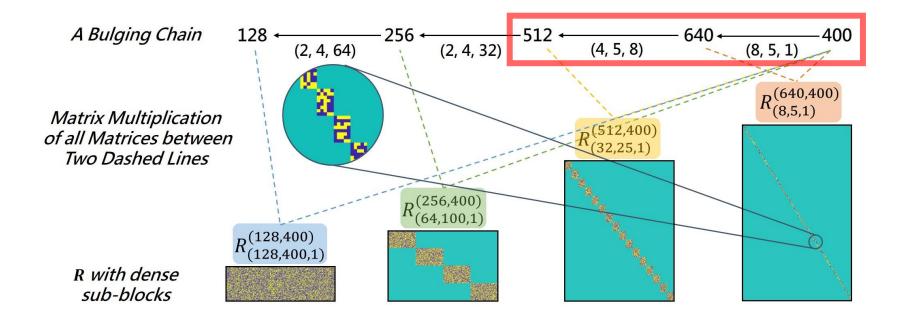
香港大學 The University of Hong Kong

DeBut Chains

The spatial size of the factor

Number of diagonal matrices in the block

ALS


The size of the diagonal matrix

<u>No more</u> Powers-of-Two limitations!

香港大學 The University of Hong Kong

DeBut Chains

Conclusion

A bulging DeBut chain

Another possible DeBut chain:

Experiments

DeBut

Background

$$128 \underset{(2,2,64)}{\longleftarrow} 128 \underset{(2,4,32)}{\longleftarrow} 256 \underset{(32,50,1)}{\longleftarrow} 400$$

DeBut Chains

ALS

A monotonic DeBut chain

A monotonic DeBut chain

香港大學

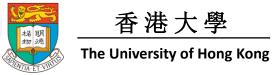
The University of Hong Kong

DeBut Chains

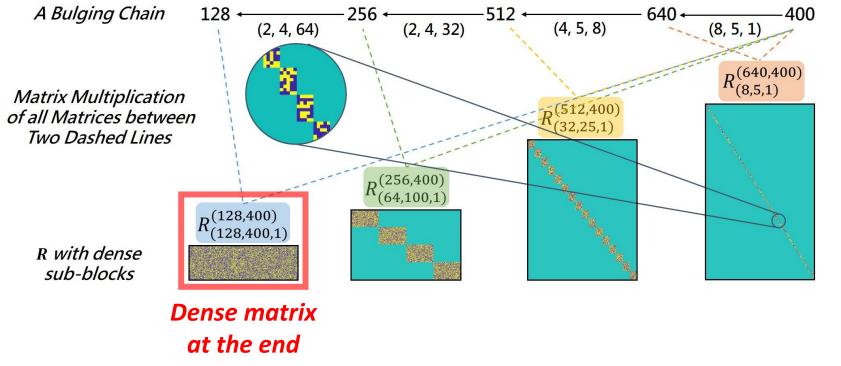
A bulging DeBut chain

$$128 \underset{(2,4,64)}{\leftarrow} 256 \underset{(2,4,32)}{\leftarrow} 512 \underset{(4,5,8)}{\leftarrow} 640 \underset{(8,5,1)}{\leftarrow} 400$$

 $128 \underset{(2,2,64)}{\longleftarrow} 128 \underset{(2,4,32)}{\longleftarrow} 256 \underset{(32,50,1)}{\longleftarrow} 400$


Page 10/21

Background


DeBut Experiments Conclusion

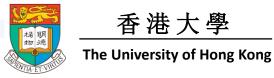
DeBut Chains

ALS

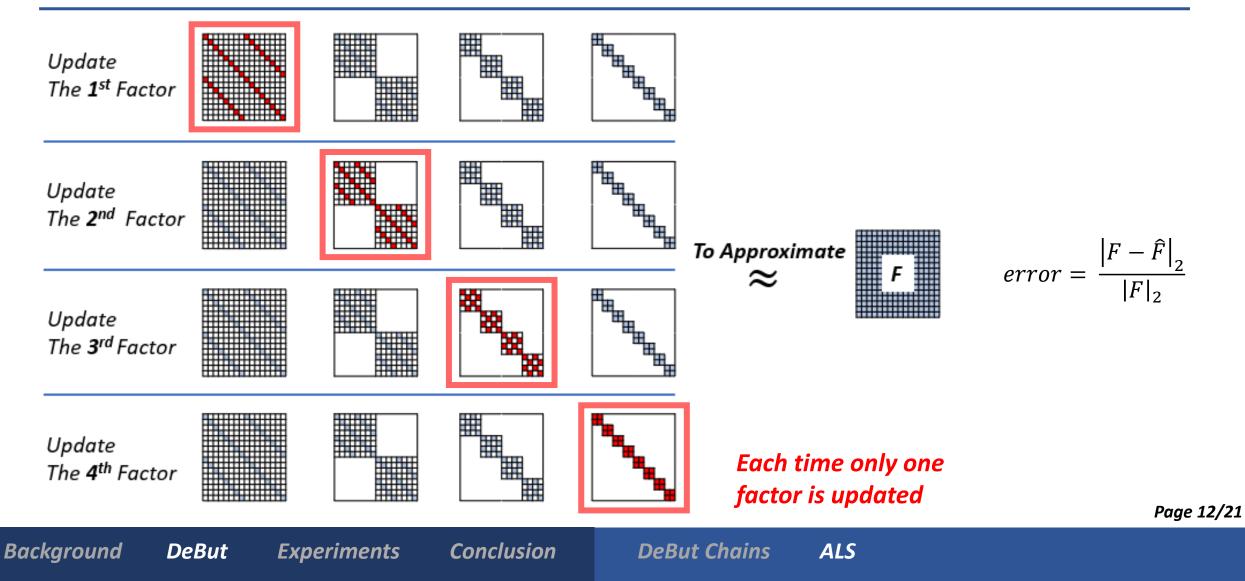
DeBut Chains

Conclusion

Background


DeBut

Experiments


<u>No entry</u> in the linear transform is **<u>forced zero</u>**.

ALS

DeBut Chains

Alternating Least Squares (ALS)

The University of Hong Kong

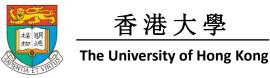
LeNet Trained on MNIST (Baseline: 99.29%)

Layer	Monotonic/Bulging Chains	LC	MC	Params	Acc% (no ALS)	Acc% (w/ ALS)
FC1	$\underbrace{(1,2,32)}_{128} \underbrace{256}_{(2,2,16)} \underbrace{256}_{(16,25,1)} \underbrace{400}_{128} \underbrace{(2,2,64)}_{(2,2,32)} \underbrace{128}_{128} \underbrace{(2,2,32)}_{128} \underbrace{128}_{(2,2,32)} \underbrace{128}_{128} \underbrace{(2,2,32)}_{128} \underbrace$	85.00% ·	70.78%	17.96K	98.89(±0.08)	$98.72(\pm 0.02)$
CONV2	$16 \xleftarrow[(2,2,8)]{} 16 \xleftarrow[(2,6,4)]{} 48 \xleftarrow[(1,2,4)]{} 96 \xleftarrow[(4,3,1)]{} 72$	41.67%	1.04%	60.84K	$99.02(\pm 0.06)$	$98.86(\pm 0.02)$
CONV2	$16 \underbrace{(2,6,8)}_{(2,6,8)} 48 \underbrace{(1,2,8)}_{(1,2,8)} 96 \underbrace{(2,2,4)}_{(2,2,4)} 96 \underbrace{(4,3,1)}_{(4,3,1)} 72$	41.67%				
FC1	$\underbrace{(1,2,32)}_{(1,2,32)} 256 \underbrace{(1,2,0)}_{(2,2,16)} 256 \underbrace{(2,2,1)}_{(16,25,1)} 400$	85.00%	83.43%	10.19K	$98.64(\pm 0.15)$	$97.27(\pm 0.02)$
FC2	$ \begin{array}{c} 128 \longleftarrow 128 \longleftarrow 128 \longleftarrow (2,2,32) \\ \longleftarrow 64 \longleftarrow 64 \longleftarrow 64 \longleftarrow (2,2,2) \\ 64 \longleftarrow (2,2,32) \\ 64 \longleftarrow (2,2,32) \\ 64 \longleftarrow (2,2,16) \\ 64 \end{array} $ 128	89.06%		e the #p gnifican		

DeBut is able to *reduce the number of parameters* further while delivering *promising* output accuracy.

Page 13/21

香港大學 The University of Hong Kong


LeNet Trained on MNIST (Baseline: 99.29%)

Layer	Monotonic/Bulging Chains	LC	MC	Params	Acc% (no ALS)	Acc% (w/ ALS)
FC1	$\begin{array}{c} \underbrace{(1,2,32)}_{(1,2,32)} & 256 \underbrace{(2,2,16)}_{(2,2,16)} & 256 \underbrace{(16,25,1)}_{(16,25,1)} & 400 \\ 128 \underbrace{(12,2,16)}_{(12,2,16)} & 128 \underbrace{(12,2,16)}_{(12,2,16$	85.00%	70.78%	17.96K	$98.89(\pm 0.08)$	$98.72(\pm 0.02)$
	(2,2,64) $(2,2,32)$ $(2,2,32)$					
CONV2	$16 \xleftarrow[(2,2,8)]{} 16 \xleftarrow[(2,6,4)]{} 48 \xleftarrow[(1,2,4)]{} 96 \xleftarrow[(4,3,1)]{} 72$	41.67%	1.04%	60.84K	$99.02(\pm 0.06)$	$98.86(\pm 0.02)$
CONV2	$16 \underbrace{(2,6,8)}_{(2,6,8)} 48 \underbrace{(1,2,8)}_{(1,2,8)} 96 \underbrace{(2,2,4)}_{(2,2,4)} 96 \underbrace{(4,3,1)}_{(4,3,1)} 72$	41.67%				
FC1	$\underbrace{(1,2,32)}_{(1,2,32)} 256 \underbrace{(2,2,16)}_{(2,2,16)} 256 \underbrace{(16,25,1)}_{(16,25,1)} 400$	85.00%	83.43%	10.19K	$98.64(\pm 0.15)$	$97.27(\pm 0.02)$
	$128 \underbrace{(2,2,64)}_{(2,2,64)} 128 \underbrace{(2,2,32)}_{(2,2,32)} 128$					
FC2	$\underbrace{(2,2,8)}_{(2,2,4)} \begin{array}{c} 64 \\ \underbrace{(2,2,4)}_{(2,2,2)} \end{array} \begin{array}{c} 64 \\ \underbrace{(2,2,2)}_{(2,2,4)} \end{array} \begin{array}{c} 128 \\ \underbrace{(2,4,1)}_{(2,4,1)} \end{array}$	89.06%				
	$64 \xleftarrow{(2,2,32)} 64 \xleftarrow{(2,2,16)} 64$	w/o	ALS ha	s better		

performance in small examples

In the *small example*, ALS initialization is *not always* beneficial for learning the latent information. However, its advantage will become obvious in *larger examples*.

Page 14/21

VGG Trained on CIFAR-10 (Baseline: 93.96%)

Layer	Chain(s)	LC	MC	Params	Acc% (w/ ALS)
CONV13	$\begin{array}{c} 4096 \xleftarrow{(2,2,16)}{} 4096 \xleftarrow{(2,2,8)}{} 4096 \xleftarrow{(8,9,1)}{} 4608 \\ 512 \xleftarrow{(2,4,256)}{} 1024 \xleftarrow{(2,4,128)}{} 2048 \xleftarrow{(2,4,64)}{} 4096 \xleftarrow{(2,2,32)}{} \end{array}$	96.79%	15.23%	12.71M	$93.91(\pm 0.08)$
CONV8	$\begin{array}{c} 2048 \xleftarrow{(2,2,32)} 2048 \xleftarrow{(2,2,16)} 2048 \xleftarrow{(2,2,8)} 2048 \xleftarrow{(2,2,8)} 2048 \xleftarrow{(8,9,1)} 2304 \\ 512 \xleftarrow{(2,2,256)} 512 \xleftarrow{(2,4,128)} 1024 \xleftarrow{(2,4,64)} \end{array}$	96.79%	83.77%	2.43M	$93.72(\pm 0.07)$
CONV9~13	$\begin{array}{c} 4096 \xleftarrow{(2,2,16)} & 4096 \xleftarrow{(2,2,8)} & 4096 \xleftarrow{(8,9,1)} & 4608 \\ 512 \xleftarrow{(2,4,256)} & 1024 \xleftarrow{(2,4,128)} & 2048 \xleftarrow{(2,4,64)} & 4096 \xleftarrow{(2,2,32)} \end{array}$	96.79%			()

Only a slight 0.24% accuracy drop

Amazingly, this VGG-16-BN with DeBut layers achieves *a remarkable MC of 83.77%* with only *a slight 0.24% accuracy drop*.

Page 15/21

ResNet-50 Trained on ImageNet (Baseline: 76.01%)

Model	MC	Params	Top-1(%) with ALS	Top-5(%) with ALS
ResNet-50		25.55M	76.01	92.93
DeBut-bulging	47.56%	13.40M	74.52	92.18
DeBut-mono	48.74%	13.10M	74.34	92.31

47.56% Parameters fewer, 1.49% accuracy lower

For <u>*DeBut-bulging*</u>, the number of parameters reduces by <u>47.56%</u>, the top-1 accuracy is 74.52%, <u>1.47% lower</u> compared with the baseline 76.01%.

ResNet-50 Trained on ImageNet (Baseline: 76.01%)

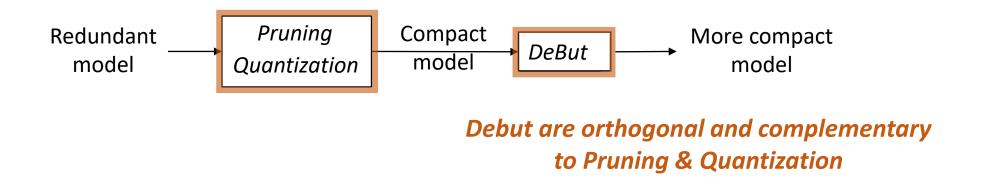
Model	MC	Params	Top-1(%) with ALS	Top-5(%) with ALS
ResNet-50		25.55M	76.01	92.93
DeBut-bulging	47.56%	13.40M	74.52	92.18
DeBut-mono	48.74%	13.10M	74.34	92.31

0.3M Parameters fewer than Debut-bulging, the accuracy 74.34% is comparable

For <u>**DeBut-mono</u>**, the compressed model has <u>**0.3M fewer parameters than the DeBut-**</u> <u>**bulging** model, yet still achieving <u>**a comparable 74.34% top-1 accuracy**</u>.</u></u>

DeBut vs. Other Linear Transform Schemes

Layer	Method	MC	Params	Acc%	Training Time(s/epoch)	Inference Time(s)
CONV8~13	Adaptive Fastfood Butterfly DeBut	$85.65\%\ 85.82\%\ 83.77\%$	2.15M 2.13M 2.43M	$\begin{array}{c} 93.60(\pm 0.02) \\ 93.34(\pm 0.12) \\ 93.72(\pm 0.07) \end{array}$	$2100 \\ 105 \\ 50$	$148.27 \\ 4.58 \\ 4.01$


* VGG trained on CIFAR-10 using different linear transform schemes

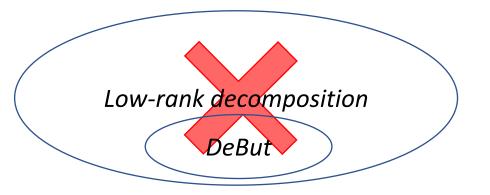
DeBut is the fastest algorithm

Fast Hadamard Transform in Adaptive Fastfood is <u>exceedingly time-consuming</u> and makes it <u>*difficult*</u> to train Adaptive FastFood on <u>*multiple layers in a large CNN*</u>.

DeBut vs. Conventional Compression Schemes

Conclusion

Layer	Method	Params	Acc(%)
	Baseline	14.99M	93.96
CONV8~13	Tucker-2	3.21M	93.36
	DeBut	2.43M	93.71


DeBut

Background

* VGG trained on CIFAR-10 using different compression methods

DeBut achieves better performance with fewer parameters

Experiments

LeNet@MNIST VGG@CIFAR-10 ResNet@ImageNet Comparison


Page 19/21

The University of Hong Kong

Conclusion

- DeBut Layers are *truly practical*. 1.
- DeBut is *fundamentally different* from standard butterfly. 2.
- DeBut layers *further unify and homogenize* FC and CONV layers. 3.
- Bulging and monotonic chains have different compression ability, performance 4. and stability.
- 5. The DeBut factor product chain provides an important implication for a pipelined DNN inference speedup.

Thanks for Your Attention!

If you have any question, please contact us.

Page 21/21